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Abstract The results from a direct numerical simulation (DNS) of turbulent, incompressible flow
through a square duct, with an imposed temperature difference between the horizontal walls, are
presented. The vertical walls are assumed perfectly insulated, and the Reynolds number, based on
the bulk velocity and the hydraulic diameter, is about 4400. Our results indicate that secondary
motions do not affect dramatically global parameters, like the friction factor and the Nusselt
number, with respect to the plane-channel flow, but the distributions of the local shear stress and
heat flux at the walls are highly non-uniform, due to the presence of these secondary motions. It is
also shown that an eddy-diffusivity approach is capable to reproduce well the turbulent heat flux. All
simulations were performed by an efficient finite volume algorithm. A description of the numerical
algorithm, together with an analysis of time-accuracy, is included. The OpenMP parallel
programming language was exploited to obtain a moderately-scalable application.
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Nomenclature
Dh ¼ hydraulic diameter, 2h
Cf ¼ friction factor
h ¼ half-height of the channel
H ¼ height of the lid-driven cavity
i ¼ unit vector for the streamwise

coordinate
j, k ¼ unit vectors for the cross-flow

coordinates
k ¼ thermal conductivity
kx ¼ streamwise wave-number,

kx ¼ 2p k=lx
lx ¼ streamwise domain length
n ¼ outer-directed wall-normal unit

vector
Nx ¼ number of cells in the streamwise

coordinate
Ny, Nz ¼ number of cells in the cross-flow

coordinates

Nu ¼ average Nusselt number
p ¼ kinematic pressure
p* ¼ tentative kinematic pressure for

Projection methods
Pr ¼ Prandtl number, n=a
qy, qz ¼ modelled components of turbulent

heat flux in the cross-flow plane
Reb ¼ bulk Reynolds number
Ret ¼ Reynolds number, utDh=n
t ¼ time
tf ¼ time-interval for Projection schemes
tK ¼ Kolmogoroff’s time-scale
T ¼ temperature
Tw ¼ wall-temperature
u ¼ velocity vector
u, v ¼ velocity components in the x and y

directions, respectively
ut ¼ friction-velocity, ut ¼

ffiffiffiffiffiffiffiffiffiffi
tw=r

p
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Introduction
The influence of secondary motions on convective heat transfer is relevant in
several technical applications, for instance, in turbulent flows over corrugated
surfaces (Nobile et al., 2000b). We are interested in the thermal effects of the so-
called secondary motions of the second kind, as first defined by Prandtl (1926),
who recognized the existence of fluid motions on a cross-stream plane, induced
by the presence of corners in solid boundaries. Buoyancy forces are neglected
in the present study, so that the temperature field behaves like a passive scalar.

Secondary motions of the second kind are present only in a turbulent flow
field (Gessner and Jones, 1965; Huser and Biringen, 1993) and it is well known
that they are induced by anisotropic turbulent fluctuations in regions of isotach
curvature (Gessner, 1972). These motions are relatively weak, in that they
account only for 2 4 3 per cent of the bulk velocity; however, their influence on
shear stress distribution and heat transfer rates is known to be quite significant
(Huser and Biringen, 1993).

In this work, we adopt direct numerical simulation (DNS) as a convenient
tool for studying both the velocity and the temperature fields in the presence of
solid corners. A square duct is a suitable geometry in this respect. An imposed
mean pressure gradient drives the flow, while a temperature difference is
maintained between the horizontal walls. The vertical walls are assumed
perfectly insulated. The Reynolds number, based on hydraulic diameter and
bulk velocity, is approximately 4400, while the Prandtl number is assumed
0.71, representative of air.

u* ¼ intermediate velocity field
v ¼ projected divergence-free velocity

field
x ¼ streamwise coordinate
xi ¼ generic coordinate
xþi ¼ wall units, xi ut/n
w ¼ velocity imposed at the boundary
y, z ¼ cross-flow coordinates
Greek
a ¼ thermal diffusivity
at ¼ turbulent thermal diffusivity
DS ¼ surface of control volume
Dt ¼ computational time-step
DTw ¼ wall-temperature difference
Dx ¼ dimension of the computational cells

in the streamwise direction
Dy, Dz ¼ dimensions of the computational

cells along the cross-flow
coordinates

G1 ¼ boundary surface with Dirichlet
boundary conditions

G2 ¼ boundary surface with Neumann
boundary conditions

w ¼ pseudo-pressure
n ¼ kinematic viscosity
r ¼ density
t ¼ wall-tangent unit-vector
tw ¼ average wall shear-stress
c ¼ generic scalar quantity
V ¼ domain (open set)
�V ¼ domain including boundary,

�V ; V%G1%G2

Subscripts
f ¼ face of control volume
w ¼ quantity at the wall
0 ¼ initial conditions
Superscripts
0 ¼ fluctuating quantity
n ¼ time level
— ¼ time- and streamwise-averaged

quantity
k l ¼ time- and volume-averaged
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Previous DNS studies for the turbulent flow in a square duct (Gavrilakis,
1992; Huser and Biringen, 1993) were focused upon the fluid dynamic features,
and did not consider heat transfer.

Several validation tests were performed in order to ascertain the ability of
the present finite volume methodology to simulate complex time-dependent
flows. In detail, a fully-implicit version of the algorithm was tested by
simulating a two-dimensional lid-driven cavity flow, at Re ¼ 1000; based on
the lid-velocity and the cavity height. The results show very good agreement
with available benchmark calculations. The time-accuracy of the present
method is determined by the combined influence of the time-discretization of
the momentum equations, the fractional-step method adopted in this work, and
the approximate-factorization scheme, used for an efficient solution of both the
momentum and the energy equations. Even though all these approximations
are assumed to be second-order time-accurate, first-order errors are introduced
at the solid boundaries. They are known to affect the pressure field (Gresho,
1990), but they were also believed to be unimportant far away from the
boundary. In this paper we show that, under certain circumstances, this may
not be the case. Moreover, the first-order error introduced by the approximate-
factorization technique affects the velocity field, even in the interior of the
computational domain. This finding was unexpected.

The OpenMP parallel programming language was used to speed-up the
calculations on shared-memory computers. We tested the parallel version of the
code on up to eight CPUs, obtaining satisfactory performances.

From the present simulations, the maximum mean velocity, in the
cross-flow plane, was found to be about 1.6 per cent of the centerline
velocity. However, the results clearly indicate that, even if both the heat
transfer rate and the friction factor are not strongly affected by the
secondary motions, the effect on the distribution of various quantities
within the flow field cannot be neglected. For instance, we report the
distributions of both the shear stress and the heat flux, at the warm wall.
Interesting features, clearly connected with the mean secondary motions,
characterize these quantities.

Problem definition and scales
The full, time-dependent, incompressible Navier–Stokes and energy equations
are solved directly, without any modelling assumption regarding the turbulent
velocity and temperature fields. Simplifying assumptions are made, in that
viscous energy dissipation and buoyancy forces are neglected, and the fluid
properties are assumed constant. The hydraulic diameter Dh, the friction
velocity ut and the wall-temperature difference DTw are used to define
dimensionless quantities. The domain dimensions are indicated in Figure 1,
which shows a sketch of the duct. The non-dimensional conservation equations
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of mass, momentum and energy describe the evolution of velocity, pressure and
temperature fields:

›u

›t
þ 7·ðuuÞ ¼

1

Ret
72u 2 7p þ 4i ð1Þ

7·u ¼ 0 ð2Þ

›T

›t
þ 7·ðuTÞ ¼

1

Ret Pr
72T ð3Þ

The velocity field is subject to no-slip boundary conditions at the solid walls,
while the temperature is assumed constant and uniform on the horizontal walls,
with a temperature difference maintained between them. The vertical walls are
assumed thermally insulated, and all variables are assumed periodic in the
streamwise direction, with a period equal to the streamwise domain length. The
last term in the momentum equation represents the non-dimensional imposed
pressure gradient.

Numerical methods
Equations (1)–(3) were solved by a finite volume algorithm. In order to describe
the characteristics of the method, we first address the problem of separating the
integration of the momentum equations from the continuity equation. Next, the
spatial and temporal discretizations are discussed.

Fractional-step method
For incompressible flows, it is convenient to split the solution of the momentum
equations from the continuity equation. Reasons for this are clearly explained
by Comini (2001), and can be summarized by observing that it does not exist as
an evolutionary equation for the pressure field. A Poisson equation for pressure
can be obtained (Pope, 2000), and could be solved simultaneously with the

Figure 1.
Sketch of the

computational domain
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momentum equations. If the coupled system of momentum and pressure
equations were exactly satisfied, the velocity field would result divergence-free.

However, as pointed out by Comini, the mass-conservation constraint would
not be imposed directly, which could lead to the violation of continuity in a
discrete framework. Moreover, boundary conditions for the pressure equation
have to be obtained from the momentum equations and are not straightforward
to be satisfied. So, alternative approaches are followed, in practice. In this
respect, in our computations we employed the Projection 2 fractional-step
method proposed by Gresho (1990). In principle, it leads to second-order
accuracy in time for the velocity field, while first-order accuracy is achieved in
the computation of the pressure field (Gresho, 1990; Brown et al., 2001). We
tested alternative formulations of the Projection method proposed by Gresho
(1990), including improved boundary conditions for the intermediate velocity
field, and an improved pressure update, as suggested by Kim and Moin (1985)
and in Brown et al. (2001). Results of extensive numerical tests on these
alternative approaches lead us to adopt the Projection 2 method as proposed by
Gresho (1990).

Higher-order fractional-step methods have not been considered in the
present work, for several reasons. First, the approximate-factorization (AF)
technique used to solve the momentum equations is inherently second-order
accurate in time in the interior of the computational domain, declining to first-
order at the solid boundaries. Moreover, the maximum allowable time-step is
subject to stability limits, due to the explicit representation of the advective
term in the momentum equations. It turns out that this limit is quite stringent,
so that its satisfaction leads automatically to accurate results. In addition, we
are interested in the simulation of fully-developed flows, so that transitional
phenomena, which usually require more accurate time-discretizations, are of no
interest here.

The continuous version of the Projection 2 method is presented next; the
selected boundary conditions were used for the simulation of the turbulent
square duct flow.

1. Given u0, 7·u0 ¼ 0 in V̄, and p* ¼ pð2tf=2Þ

2. Obtain an intermediate velocity field, u*, by solving a modified version of
the momentum equations for 0 , t # tf :

›u*

›t
¼ 27p* þ

1

Ret
72u* 2 7·ðu*u* Þ þ f* ð4Þ

u* ¼ w on G1 ð5Þ

u* ðx þ lxiÞ ¼ u* ðxÞ ;x ð6Þ
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3. Evaluate the pseudo-pressure, which projects u* onto the divergence-free
vector field (Gresho, 1990):

72w ¼ 7·u* in V; at time tf ð7Þ

›w

›n
¼ 0 on G1

wðx þ lxiÞ ¼ wðxÞ ;x

4. Project the velocity field:

v ¼ u* 2 7w in �V ð8Þ

5. Impose the actual boundary conditions to the velocity field v on G1:

v ¼ wt¼tf
on G1 ð9Þ

6. Update the pressure field:

pt¼tf =2 ¼ p* þ w=tf ð10Þ

and start a new cycle, by letting u0 ˆ v; p* ˆ pt¼tf =2 in �V:

Some remarks are worthwhile, at this point. First, u* is a second-order
approximation of ut¼tf

in V̄, as shown by Gresho (1990). The pseudo-pressure
is related to the pressure field by:

w ¼ t2
f

›p

›t

����
t¼0

þF þ Oðt3
f Þ in �V ð11Þ

Gresho (1990) proved that F is a harmonic function of order t2
f ; satisfying the

following boundary-value problem:

72F ¼ 0 in V

›F

›n
¼ 2t2

f

›

›n

›p

›t

����
t¼0

þOðt3
f Þ ð12Þ

Moreover, what is most important, v is a second-order approximation of ut¼tf

(Gresho, 1990). In Brown et al. (2001), it is shown that better boundary
conditions could be applied to u*. Namely, the boundary condition (5) causes a
slip velocity to occur on G1, which is artificially eliminated after the projection
step, creating a discontinuity in the velocity field v. As explained by Gresho
(1990), the elimination of the slip velocity after the projection step (8)
corresponds to a discontinuous flux of tangential vorticity from the boundary
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G1 into the computational domain. Kim and Moin (1985) and Brown et al. (2001)
suggest eliminating the slip velocity by applying the following tangential
boundary conditions for u* on G1:

u* ·t ¼ w·tþ
›wn

›t
on G1 ð13Þ

By using Equation (13) one obtains second-order accuracy for the velocity field
in the Projection 1 framework (Brown et al., 2001), while it does not affect the
order of accuracy of the Projection 2 method. This is reasonable, in that the slip
velocity resulting from the application of the standard Projection 2 algorithm is
a second-order quantity in tf:

s ¼ ðv 2 wÞ·t ¼ 2t2
f

›p

›t

����
t¼0

þOðt2
f Þ on G1 ð14Þ

However, Armfield and Street (2001) show that the use of Equation (13) with
the Projection 2 method causes a relevant reduction in the magnitude of the
error on the evolution of pressure, even though it does not affect the order of
accuracy.

The pressure-update, Equation (10), is obtained by:

pðtf=2Þ2 pð2tf=2Þ

tf

¼
›p

›t

����
t¼0

þOðt2
f Þ

¼
w

t2
f

þ Oð1Þ

ð15Þ

so that

pðtf=2Þ ¼ pð2tf=2Þ þ
w

tf

þ Oðtf Þ ð16Þ

The O(tf) error arises from the function F; far away from the boundary, F
should be Oðt3

f Þ (Gresho, 1990), so that the error on pðtf=2Þ should be Oðt2
f Þ in

the interior of the domain. Kim and Moin (1985) and Brown et al. (2001) suggest
a second-order update for the pressure field, in the framework of semi-implicit
methods, when the viscous term in Equation (4) is discretized by the Crank–
Nicolson method. When applied to the Projection 2 method, this update reads:

pnþ1=2 ¼ pn21=2 þ
w

tf

2
1

2Ret
72w ð17Þ

The improved pressure-update does not significantly affect the accuracy of the
velocity field, which is still second-order accurate in time (Brown et al., 2001).
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Spatial discretization
The present algorithm adopts a traditional MAC staggered-grid arrangement
for the flow-field variables (Ferziger and Perić, 1999). Nodes for scalar
variables, like pressure and temperature, are located at the control volume (CV)
center, while the mid-point of each CV-face is selected for the location of the
velocity component normal to the face itself. Figure 2 shows such a variables
arrangement in the two-dimensional case.

Among other advantages (Patankar, 1980; Ferziger and Perić, 1999), the use
of both a staggered-grid and a direct Poisson solver guarantees mass-
conservation, for each CV, up to round-off error. In the framework of the
adopted projection method, this is achieved as follows:

Continuous case

(1) Conservation requirement: Z
DS

u·n dS ¼ 0 ð18Þ

(2) Conservation error before the projection step:

e ¼

Z
DS

u* ·n dS – 0 ð19Þ

Figure 2.
Staggered grid for the
two-dimensional case
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(3) Projection step:Z
DS

ðu* 2 7fÞ·n dS ¼ 0()

Z
DS

7f·n dS ¼

Z
DS

u* ·n dS ð20Þ

Discrete case

(1) Conservation requirement:

f

X
uf DSf ¼ 0 ð21Þ

(2) Conservation error before the projection step:

e ¼
f

X
u*

f DSf – 0 ð22Þ

(3) Projection step:

f

X
ðu*

f 2 dffÞ DSf ¼ 0()
f

X
dffDSf ¼

f

X
u*

f DSf ð23Þ

where DS represents the CV surface, DSf its generic face, and df

represents the discrete approximation of the normal derivative to face f.

The FV method solves directly Equation (23), and due to the staggered grid
arrangement, no interpolation is required for the velocity components uf. In our
code we adopt second-order, central differentiation and interpolation schemes.
Surface integrals, required for the evaluation of both the advective and
diffusive fluxes, were calculated by the mid-point rule. The overall accuracy
was verified to be second-order. One additional advantage of the FV method,
when coupled with a staggered-grid approach, is that kinetic energy is
automatically conserved.

Temporal discretization
Most of our computations have been performed by the Projection 2 method as
presented by Gresho (1990), by exploiting an explicit second-order Adams–
Bashforth extrapolation for the advective term and an implicit Crank–Nicolson
scheme for the viscous term. The implicit treatment of the viscous term
eliminates the stability constraint related to viscous diffusion.

The semi-discrete version of the fractional-step algorithm adopted in this
work consists of the following steps:

(1) Given u0, 7·u0 ¼ 0 in �V and u0·n ¼ w·n on G1

(2) Perform one time-step by a Projection 1 method. This allows to set the
initial pressure field: pðDt=2Þ < w=Dt
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(3) Solve for the intermediate velocity field u*:

u* 2 un

Dt
¼ 27pn21=2 þ

1

2Ret
½72u* þ 72un	

2 1
2 ½3Hn 2 Hn21	 þ fnþ1=2

ð24Þ

Hn ¼ 7·ðununÞ

u* ¼ w on G1; u* periodic in x

(4) Evaluate the pseudo-pressure, by solving:

72w ¼ 7·u* ð25Þ

›w

›n
¼ 0 on G1; w periodic in x

(5) Update un, by projecting u* onto the divergence-free subspace:

unþ1 ¼ u* 2 7w on �V ð26Þ

The updated velocity unþ1 is a second-order approximation of the true
velocity, since all the approximations are second-order accurate. In order
to eliminate the slip-velocity at the wall, unþ1·t is set to 0 on the no-slip
walls: unþ1·t ¼ w·t on G1

(6) Update the pressure-field, by using a first-order accurate estimate:

pnþ1=2 ¼ pn21=2 þ w=Dt ð27Þ

(7) After updating the velocity and pressure fields, the simulation is
restarted from point 3.

The temperature field is solved independently of the velocity field, due to the
explicit treatment of velocity in the energy equation.

The solution of step 3 is carried out by an AF technique, which decouples the
solution of the momentum equations along each independent coordinate
direction, while retaining the second-order accuracy in time. The same strategy
is used for the energy equation. The implicit term of the momentum equations
can be factorized as follows:
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1 2
Dt

2Ret
72

� �
u*

i ¼ 1 2
Dt

2Ret

›2

›x2

� �
1 2

Dt

2Ret

›2

›y2

� �


 1 2
Dt

2Ret

›2

›z2

� �
u*

i þ O½ðDtÞ2	 ð28Þ

Thus, the solution of step 3 progresses as follows:

1 2
Dt

2Ret

›2

›x2

� �
ûi ¼ 27pn21=2Dt 2

Dt

2
½3Hn

i 2 Hn21
i 	 þ

Dt

2Ret
72un

i

þ f
nþ1=2
i þ un

i ð29Þ

ûi periodic in x

1 2
Dt

2Ret

›2

›y2

� �
~ui ¼ ûi ð30Þ

~ui ¼ 0 on the vertical walls

1 2
Dt

2Ret

›2

›z2

� �
u*

i ¼ ~ui ð31Þ

u*
i ¼ 0 on the horizontal walls.

The energy equation is solved by three similar steps:

1 2
Dt

2RetPr

›2

›x2

� �
T̂ ¼ 2

Dt

2
½3Hn

i 2 Hn21
i 	 þ

Dt

2RetPr
72T n þ T n ð32Þ

T̂ periodic in x

1 2
Dt

2RetPr

›2

›y2

� �
~T ¼ T̂ ð33Þ

› ~T=›n ¼ 0 on the vertical walls

1 2
Dt

2RetPr

›2

›z2

� �
T nþ1 ¼ ~T ð34Þ

T nþ1 ¼ ^Tw on the horizontal walls.
The boundary conditions for ûi and ûi are assumed to coincide with those

imposed on u*
i : This practice can be justified by observing that both ûi and ûi

are first-order approximations of u*
i : Thus, a first-order error is introduced at

the solid boundaries. Similar considerations hold for the energy equation.
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The Poisson equation arising from step 4 is solved by an efficient matrix-
decomposition technique, based on ideas proposed by Babu and Korpela (1993).
The fast fourier transform (FFT) is used to decouple the system of algebraic
equations, resulting from a finite volume representation of Equation (25), along
the streamwise, periodic direction.

A fully-implicit version of the present algorithm, using a Crank–Nicolson
discretization for both the advective and the diffusive terms, was tested by
simulating a lid-driven cavity flow at Re ¼ 1000; where Re is the Reynolds
number based on the lid-velocity and cavity height. The Projection 2 method
was used, both in an iterative version, leading in principle to second-order
accuracy for both the velocity and the pressure fields (Armfield and
Street, 2001, 2002), and in the single-step version used for the square-duct
simulation.

Two grids were used, 48 £ 48 and 96 £ 96; with hyperbolic-tangent
stretching along both coordinate directions. Figure 3 shows the streamlines,
evaluated on a 96 £ 96 grid by the non-iterative method. The main parameters
of the simulations are reported in Table I, together with the maximum
discrepancy between the present results and those reported by Botella and
Peyret (1998).

Figure 4 reports the L1 and L1 time-discretization errors for the
fully-implicit, iterative Projection 2 algorithm used to simulate the lid-driven
cavity. Similar results were obtained by the semi-implicit algorithms.
Figure 5 shows the same errors, obtained by the single-step Projection 2
(Gresho, 1990).

Figure 3.
Main geometric

characteristics of the
computational domain

for the simulation of the
lid-driven cavity.

Streamlines at
Re ¼ 1000 evaluated on

a 96 £ 96 grid
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The comparison of these figures leads to the following remarks:

. The iterative scheme leads to second-order convergence for both the
velocity and the pressure fields, at points sufficiently far from the
boundary. However, first-order convergence for both the velocity and the
pressure fields is obtained at x=H ¼ y=H < 0:98; that is, close to the
moving top wall. As a consequence, the L1 errors, Figure 4(a), exhibit a
first-order behaviour. The L1 errors, Figure 4(b), indicate second-order
accuracy for large Dt, but show first-order accuracy in the limit of very
small time-steps. This behaviour is consistent with the fact that, as the
time-step decreases, the first-order error contribution prevails.

. The iterative method is, in principle, second-order accurate. The only
first-order contribution comes from the treatment of boundary conditions
when using the AF technique. This has been verified to decrease the
overall accuracy of the method.

. The Projection 2 method, Figure 5, obtains results very close to the
iterative method. Again, the AF technique affects the accuracy of the
velocity field, which otherwise would be expected second-order accurate.
In this case, the pressure field is first-order accurate both in the interior of
the domain and close to the boundary. The presence of round-off errors is
evident in Figure 5(a), at the smallest values of the time-step, for the
velocity at ðx=h ¼ y=h ¼ 0:15Þ:

. It was verified that the pressure-update formula suggested by Kim and
Moin (1985), Equation (17), in combination with the AF technique, did not
affect significantly the accuracy of the velocity field, with respect to the
simpler pressure-update formula, Equation (27). However, the accuracy of
the pressure-field is reduced, and becomes first-order accurate even in the
interior points.

. From the former remarks, it is evident that the first-order effect associated
with the boundary conditions used in the AF framework, propagates onto
the pressure field through the pseudo-pressure Equation (25), and the
pressure-update Equation (27).

Armfield and Street (2001; 2002) performed the same tests on a differentially-
heated cavity, where the flow was driven by buoyancy forces. They reported
errors obtained with both the iterative and non-iterative Projection 2 algorithm,
using various second- and third-order time-discretization schemes for the

Grid Dx=H ; Dy=H Dt eu (%) ev (%)

48 £ 48 0.006640.0345 0.0025 3.60 4.94
96 £ 96 0.0032 4 0.0173 0.0010 0.97 1.22

Table I.
Maximum relative
errors on horizontal
and vertical velocity
components for the
lid-driven cavity at
Re ¼ 1000;
evaluated on the
vertical and
horizontal bisectors,
respectively
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Figure 4.
Time-discretization error
for the lid-driven cavity

flow at Re ¼ 1000:
Iterative Projection 2

method. (a) Absolute and
L1 errors. A: L1 error on

the horizontal velocity,
with ADI. 7: absolute

error on the horizontal
velocity at x=H ¼

y=H ¼ 0:15; with AF. +:
absolute error on the
horizontal velocity at
x=H ¼ y=H ¼ 0:98;

with AF. D: L1 error on
pressure, with ADI. W:

absolute error on
pressure at

x=H ¼ y=H ¼ 0:15;
with AF. £ : absolute
error on pressure at
x=H ¼ y=H ¼ 0:98;

with AF. *: L1 error on
the horizontal velocity,

with AF. †: L1 error on
the pressure, with AF. (b)
L1 errors. K: L1 error on
horizontal velocity, with

AF. A: L1 error on
pressure, with AF
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Figure 5.
Time-discretization error
for the lid-driven cavity
flow at Re ¼ 1000:
Projection 2 method. (a)
Absolute and L1 errors.
A: L1 error on the
horizontal velocity. L:
absolute error on the
horizontal velocity at
x=H ¼ y=H ¼ 0:15: +:
absolute error on the
horizontal velocity at
x=H ¼ y=H ¼ 0:98:
K: L1 error on pressure.
W: absolute error on
pressure at
x=H ¼ y=H ¼ 0:15:
£ : absolute error on
pressure at
x=H ¼ y=H ¼ 0:98:
(b) L1 errors. K: L1 error
on horizontal velocity.
A: L1 error on pressure
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advective and the diffusive terms. They observed the expected convergence
rates for both the velocity and pressure fields, and report that the pressure-
calculation was improved by the use of the Kim and Moin (1985) pressure-
update formula. They used an alternate direction implicit (ADI) scheme in
order to solve the modified momentum equations, when the advective term was
discretized by explicit schemes. They explained the lower-order convergence-
rates obtained by other investigators for the pressure field by observing that
the pressure-update Equation (27) returns the pressure at time-step n þ 1=2; so
that, by comparing results obtained at a fixed final time by using different
time-steps, an error of order Dt was introduced. They showed that, by
extrapolating the pressure field to time-step n þ 1; by using an Adams–
Bashforth formula, the second-order convergence-rate was recovered. Our
results were obtained by the suggested extrapolation, but different results were
obtained, as already mentioned.

Since we suspected that the first-order convergence rate obtained for both
the pressure and, particularly, the velocity field, was related to the inadequate
representation of the boundary conditions by the AF technique, we also solved
the modified momentum equation by an ADI method. By iterating the
projection-step within each time-interval, as suggested by Armfield and Street
(2001), we obtained second-order convergence for both velocity and pressure,
on the whole domain. This can be verified in Figure 4. Therefore, the first-order
convergence-rate for the velocity field, found in our results, is entirely due to
the AF technique.

The three-dimensional simulations reported in this work were performed by
exploiting a semi-implicit time-discretization scheme for the momentum
equations. A second-order Adams–Bashforth scheme was used for the
representation of the transverse advective terms, while the Crank–Nicolson
scheme was used for the diffusive and the streamwise advective terms. Picard
linearization (Ferziger and Perić, 1999) was adopted for the streamwise
advective terms, thus relaxing the CFL limit.

The AF technique was used in order to split the integration of the
momentum equations along the three coordinate directions. In spite of the main
findings about the temporal accuracy, just discussed, the following
considerations explain our choice:

(1) The ADI technique, differently than AF, requires an iterative solution.
This is acceptable when the Poisson Equation (25) is solved by an
iterative method, but can be too expensive if, as in our case, fast direct
solvers are adopted. This is frequently the case for DNS studies.

(2) The ADI method requires several evaluations of right-hand-side of the
momentum equations, and this further increases its computational cost.

(3) In the results section it will be shown that the time-step adopted in
our simulations is orders of magnitude smaller than the Kolmogoroff
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time-scale corresponding to the selected Reynolds number, so that the
time-discretization error is negligibly small compared to the spatial-
discretization error. Therefore, we can accept an almost first-order
convergence rate in time, provided that the resulting algorithm is
computationally efficient.

After time-discretization, the momentum and energy equations result in (c
representing either u*

i or T ):

cnþ1 2 cn

Dt
¼ 2

›

›x
ðuncnþ1Þ2

3

2

›

›y
ðvncnÞ þ

›

›z
ðwncnÞ

� 	

þ
1

2

›

›y
ðvn21cn21Þ þ

›

›z
ðwn21cn21Þ

� 	

þ 1
2 ð7

2cnþ1 þ 72cnÞ þ f nþ1=2

ð35Þ

Parallelization
The OpenMP parallel programming language (OpenMP 2.0 2000) was used to
run the code on shared-memory, parallel computer-servers and super-
computers. Though the CFD community is presently oriented toward the
development of distributed-memory MPI applications, which are usually more
scalable, we believe that the OpenMP language can be very useful in some
circumstances. More specifically, the OpenMP language is more widely
applicable, since it can conveniently deal with algorithms that do not provide
for a native partition of the data-structure. Both the AF and the matrix-
decomposition algorithms used in our code are not optimal, in this respect.
Moreover, OpenMP allows for simpler and progressive parallelization, and
requires, in general, minor modifications to a scalar version of the code. In this
sense, both the AF and the matrix-decomposition algorithms make the
OpenMP parallelization very natural, in that blocks of planes can be solved
independently, and are assigned to different processors. However, when the
direction of integration is switched, for the AF method, and when the forward
and backward transformations occur, for the matrix-decomposition method, a
lot of communication takes place, so that an efficient distributed-memory
implementation would be difficult. The OpenMP parallelization is not affected
by these drawbacks, although performance and scalability are lower than the
those provided by an efficient MPI implementation.

As an example, Table II illustrates values of the speed-up and CPU-time
obtained, for a single time-step and with a grid 600 £ 127 £ 127; on two
different parallel computers, running the code in a multi-user, time-sharing
environment. For the problem-size characterizing the simulations reported in
this work, up to 107 cells, the performances summarized in Table II were
deemed adequate.

HFF
12,6

674



Results and discussion
Two simulations have been considered, and they differ in the streamwise
domain length, lx. The computational grid is uniform in the homogeneous,
streamwise direction, while an hyperbolic-tangent distribution is adopted in
both cross-stream directions. The maximum expansion-ratio between adjacent
cells is less than 6 per cent, so that the first-order error introduced by the grid
stretching is negligible. The time-step was kept at a fixed value of utDt=Dh ¼
0:00018; which was judged to be adequate by Gavrilakis (1992). This leads to a
CFL number around 0.2. The Kolmogoroff time microscale for the velocity field
is of order tK ¼ 0:013Dh=ut; so that Dt=tK < 1:5 £ 1022: Thus, we should be
able to obtain an adequate time-resolution for most of the turbulent
fluctuations. The analysis of the cumulative frequency distributions of both
velocity and temperature signals, not shown here, confirmed this expectation,
since most of the energy is contained in the resolved scales. In order to reduce
the computational time required to loose information of the initial conditions,
the streamwise advective term in both the momentum and energy equations
was treated implicitly, and the time-step was doubled with respect to that used
to acquire the statistics. The main parameters of both simulations are
summarized in Table III.

Selecting an adequate streamwise domain-length is an important issue. As
pointed out by Gavrilakis (1992), the correlation between two points, separated
in the streamwise direction, shows a very slow decay, when compared with the
plane-channel flow. This fact can be interpreted as the presence of very
elongated turbulent structures, which we would like to capture. Moreover,
(Gavrilakis, 1992) points out that a streamwise domain length of about 10p Dh

is sufficient to guarantee domain-independent statistics. Adopting such a
domain would result in very expensive computations, so we use shorter
computational boxes (Table III).

SGI Origin 3000 IBM SP3
Nr CPUs CPU-time (s) Speed-up CPU-time (s) Speed-up

1 48.3 1 224.6 1
4 29.4 1.64 60.3 3.72
8 15.4 3.13 29.1 7.72

Table II.
Performances

obtained by running
the semi-implicit

code (only velocity
and pressure fields)

on two parallel
computers: ORIGIN
3000, with 400 MHz
processors, 8 Mb 2L

cache; IBM SP3,
with 222 MHz

processors, 4 Mb 2L
cache

Case lx=Dh Nx £ Ny £ Nz Dx +, Dy + Dt ut=Dh

A 18.84 600 £ 127 £ 127 9.42, 0:45 4 4:59 0.00018
B 6.28 200 £ 127 £ 127 9.42, 0:45 4 4:59 0.00018

Table III.
Main parameters for

the simulations of
the turbulent square

duct
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Streamwise autocorrelation functions for streamwise velocity and temperature
fluctuations, not reported here for brevity, were evaluated for both cases, A and
B. At the centerline, for case A, the correlation functions for both streamwise
velocity and temperature tend to oscillate around zero at separations much
smaller than half of the domain length. This should indicate that the largest
turbulent structures are contained within the computational domain. In the
near-wall region, however, the autocorrelation functions do not vanish within
half of the domain length. This behaviour is likely to be the effect of the very
elongated streaky structures found in the near-wall region, which are well
documented in the channel flow. Streamwise velocity and temperature streaks
are illustrated in Figure 6. The autocorrelation functions for case B, however,
indicated that the smaller length of the domain is inadequate to capture the
largest turbulent structures, even in the core-region.

A clear similitude exists between streamwise velocity and temperature
streaks, indicating that the Reynolds similarity holds, in the near-wall region.

Mean secondary motions in the cross-flow plane of the square duct, shown in
Figure 7, result in four couples of counter-rotating corner-vortices, and they are
well documented in the literature (Gavrilakis, 1992). Other four couples of
weaker counter-rotating vortices are located on both sides of the wall-bisectors;
they are relatively weak and highly intermittent, and are known to be a low-
Reynolds effect (Huser and Biringen, 1993).

Mean temperature profiles, at several spanwise locations, are reported in
Figure 8, together with a mean temperature profile for the plane channel flow.
As can be recognized, the temperature profiles for the channel flow and for the
duct flow, at the wall-bisector, agree almost perfectly over the whole channel
height. This similarity could be explained by looking at the ensemble-averaged

Figure 6.
Streamwise velocity and
temperature fluctuations,
at zþ < 17; from case A.
(a) negative velocity
fluctuations; (b) positive
velocity fluctuations; (c)
negative temperature
fluctuations; (d) positive
temperature fluctuations
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energy equation for both the plane channel and the duct flows. Due to the
imposed boundary conditions and to the symmetries, which must hold at the
wall-bisector, the differences between the energy equation, in the two cases, are
restricted to the following terms:

�w
›

›z
�T ¼

1

Ret Pr

›2

›z2
�T þ

›2

›y2
�T

� 	
2

›

›z
w0T 0 ð36Þ

It was verified that the distributions of w0T 0 across the square duct and the
channel are very similar, when evaluated at the wall-bisector. Since the
turbulent heat flux decreases by approaching the side-walls, it is not surprising
that a mean temperature distribution, evaluated at 3.3 wall-units from a side-
wall (Figure 8), results in a less bulged profile, compared to the one at the wall-
bisector. Maybe it is even more interesting to note that, at a distance of 36 wall
units from a side-wall, this trend is inverted. From Figure 8, it is evident that
the first term on the right-hand side of Equation (36) is negligible with respect
to the third one. The curvature of mean temperature contours, on a wall-
bisector, is also very small, so that the second term on the right-hand side can
be neglected as well, as a first approximation. Moreover, from our data it
results that the z-variation of the turbulent heat flux assumes larger values at
36 wall-units from a vertical wall, than at a wall-bisector. So, the fact that dT/dz
is smaller near a vertical wall, than at the centerline, can be explained only if w̄
is larger at the first location, as was verified.

Figure 7.
Mean secondary motions
on a cross-stream plane.

Mean streamwise
velocity contours are

superimposed
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Values for the bulk-Reynolds number, Reb, the mean Nusselt number, Nu, the
mean turbulent kinetic energy, kkl; and the friction factor, Cf, are reported in
Table IV. The friction factor agrees, to better than 1 per cent, with empirical
correlations available for this geometry (Bhatti and Shah, 1987), when the
laminar equivalent diameter, Dl ¼ ð1 þ

ffiffiffi
2

p
Þ h, is used. The Nusselt number is

defined as Nu ¼ ðqw 2hÞ=½kðDTwÞ	: The Nusselt number from present
simulations is only 12 per cent smaller than the Nusselt number evaluated
for the channel flow (Nobile et al., 2000a).

A possible interpretation of this fact could be that the decrease of heat
transfer in the laminar regions, close to the vertical walls, is partially
compensated by the increase due to the presence of mean secondary motions.
This picture is confirmed by Figure 9, which shows the total heat-flux profile,
evaluated on spanwise sections. Focusing on locations near the vertical walls,
one can appreciate that the total heat-flux is smaller in the core-region, than

Present results Gavrilakis (1992) Channel (Nobile et al., 2000a)

Reb 4443 4410 4602
Ub 14.8 14.7 15.3
Cf £ 103 9.135 9.25 8.2
kkl 2.0u2

t 2.1u2
t

Nu 5.55 5.45

Table IV.
Global statistics,
compared with a
DNS for the square
duct, and the results
for the channel flow

Figure 8.
Mean temperature profile
at several spanwise
locations, and data from
a DNS for the plane-
channel flow (Nobile
et al., 2000a). – :
y=2h ¼ 20:4887: –A–:
y=2h ¼ 20:384: – –:
y=2h ¼ 0 (centerline). –
D–: plane-channel
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near the horizontal walls. This is due to the increased turbulent heat flux,
caused by the corner vortices. No empirical formulae are available, to the best
of our knowledge, for the Nusselt number, with the boundary conditions used
in the present simulations.

Figure 10 shows the distribution of the mean, total shear stress at the bottom
wall. The shear stress vanishes at the vertical walls, due to the presence of
stagnation regions at the corners. Three local maxima are evident in the shear-
stress profile at the wall. The near-wall peaks are located in the region below
the corner-vortices, and are clearly generated by the intense impingement of
high-speed fluid, carried from the vortex, against the wall. The local minima
are located where the corner vortices carry low-speed fluid from the wall,
toward the core region. Clustering and widening of streamwise velocity
contours, evident in Figure 7, allow an immediate interpretation of the shear-
stress behaviour.

The local heat flux at the horizontal wall, Figure 9, shows a behaviour
similar to the shear stress. In this case, however, no central maximum is
present.

A possible explanation of the heat-flux distribution at the wall can be
formulated by means of a Lagrangian point of view. Let us consider a warm
fluid particle, trapped into a vortex, and moving from the core region toward
the upper, cold wall. Due to thermal diffusion, heat phleaks from the particle,
during its motion through the progressively colder fluid regions, near the cold
wall. Of course, the leaking of heat from a fluid particle takes place during a
longer period, if the fluid particle is trapped into a weak vortex, like those

Figure 9.
Total heat flux profile at

several distances from
the bottom, warm wall.

–A–: z=2h ¼ 20:5
(wall). –D–:

z=2h ¼ 20:377: – –:
z=2h ¼ 0 (centerline)
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located on both sides of wall bisectors. This picture can be applied to
streamwise-momentum transfer as well. But, since Pr ¼ 0:71 , 1:0; we can
expect momentum leaking out from a vortex less intensively than heat. This
could account for the different distribution of heat flux and shear stress at the
horizontal walls: the weak vortices, close to a wall bisector, do not have enough
strength for avoiding sensible leak of heat from a fluid particle, but they are
strong enough for carrying streamwise momentum toward the walls.

The w0T 0 turbulent heat flux decreases near the vertical walls, due to the
combined effect of a reduction in the intensity of both w0 and T0, as shown in
Figure 11. Moreover, there is also a loss of correlation between w0 and T0, in
regions close to the vertical walls, as reported in Figure 12, which shows the
distribution of w0T 0=w0T 0: This is an expected feature, considering the different
boundary conditions imposed on velocity and temperature.

It can be interesting to observe that the correlation coefficient is particularly
low in correspondence of the corner vortices, close to the vertical walls, in
regions where the fluid is pumped from the wall toward the core region. This
feature could be related to the thickening of the region of low w0, attached to the
horizontal walls, when approaching the vertical walls (Figure 11). The
reduction in w0 would lead to an increased correlation coefficient. However, one
can conjecture that the reduction in the turbulent heat flux, caused by the loss
of correlation between w0 and T0 fluctuations, more than compensate for the
reduction of w0, resulting in a decreased correlation coefficient.

We have verified that the distributions of the turbulent and molecular heat
fluxes, not reported here, are surprisingly similar. This may suggest that,

Figure 10.
Mean profile of
shear-stress at an
horizontal wall
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Figure 11.
w0 and T0 contours, on a

cross-flow plane

Figure 12.
w0T 0=w0T 0 contours, on a

cross-flow plane
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unlike the isotropic eddy-viscosity approach for the velocity field, which is
unable to reproduce i.e. the secondary motions, a gradient-diffusion model for
the temperature field would provide an adequate representation of the
turbulent heat flux. In order to test this idea, we defined an eddy-diffusivity as:

at ¼
w0T 0

›T

›z

ð37Þ

where it should be noted that, with this definition, at is isotropic but not
homogeneous. The modelled components of the turbulent heat-flux, are
therefore given by:

qy ¼ at
›T

›y
ð38Þ

qz ¼ at
›T

›z
ð39Þ

There is no unique definition for at, in the duct-flow configuration. Namely, the
molecular heat-flux is not exactly parallel to the turbulent heat-flux, on a duct
cross-section. The definition (37) is motivated by the importance of exactly
reproducing the main turbulent heat-flux w0T 0: That is, qz ; w0T 0: However,
Equation (38) is a true model for v0T 0; in the framework of eddy-diffusivity
models. The modelled and computed heat-flux vector fields, (qy, qz)

T and
ðv0T 0;w0T 0ÞT respectively, (not reported here) have similar direction fields.
Their magnitudes are compared in Figure 13, and the agreement is remarkably
good. The maximum value for both distributions is 0.0281. So, quite
surprisingly, eddy-diffusivity models, for this heat transfer problem, work
pretty well.

Figure 13.
(a) Magnitude of
ðv0T 0;w0T 0ÞT : (b)
Magnitude of (qy, qz)

T. In
both figures, brighter
colours represent higher
magnitudes
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The distribution of at=a is shown in Figure 14. It is almost constant in the
core-region, a circumstance that could suggest that assuming a uniform value
of at in the core-region could result in a sufficiently good approximation, for
practical purposes. In (Piller et al., 2002) simple modelizations of at are shown
to not affect significantly the evaluation of the mean-temperature profile, for
the turbulent plane-channel flow. In the near-wall region turbulent heat-
transfer is smaller than the combined effect of molecular and advective heat-
transfer, so that a simple fitting of the at profile should be sufficient.

Streamwise, cumulative power spectra, for streamwise velocity and
temperature fluctuations, are shown in Figure 15, at two locations along the
bottom-wall bisector. One interesting feature arising from this figure is that,
although the Prandtl number is smaller than unity, streamwise velocity
fluctuations decay faster, at high wavenumbers, than temperature fluctuations,
both in the core region and in the near-wall region. As for the core region, this
feature could be explained by observing that the viscosity is relatively
unimportant, here, so that large turbulent structures can be generated. So, in
the core region, most of the energy should be concentrated in large-scale
motions, corresponding to small wavenumbers. Possibly, due to Pr , 1; the
temperature field does not follow exactly these velocity structures, generating
smaller-scale structures. As for the near-wall region, viscosity and molecular
conductivity should dominate the momentum and heat transfer, respectively.
Since Pr , 1; the reported behaviour of spectra does not lead to a
straightforward interpretation. In addition, both velocity and temperature

Figure 14.
Distribution of at=a
along an horizontal

bisector, solid line, and a
vertical bisector, dashed

line
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fluctuations decay faster near the wall, than in the core region, as could be
expected, due to the larger contribution of viscosity and thermal conductivity
near the walls.

Concluding remarks
In this work we presented the results, obtained from DNS, of turbulent forced
convection in a differentially-heated square duct. In particular, DNS results for
the temperature field were not available before, to the best of our knowledge.

Streamwise cumulative spectra for both streamwise velocity and
temperature fluctuations were calculated, at various cross-stream locations.
Some peculiar aspects regarding the decay of the highest wave-number
components were pointed out.

The influence of mean secondary motions on both the temperature and
velocity fields was discussed. The maximum intensity of these motions was
found to be about 1.6 per cent of the maximum mean streamwise velocity. The
comparison of the duct flow with the plane-channel flow led to the observation
that global parameters, like the Fanning friction-factor and the Nusselt number,
are not strongly affected by the presence of the side-walls, while the
distribution of the local shear-stress and heat-flux at a wall shows
characteristic oscillations, whose origin appears to be related to the mean
secondary motions.

The eddy-diffusivity approach, usually adopted in CFD predictions, is
known to be unable to reproduce the most salient features for this bounded

Figure 15.
Spectra of streamwise
velocity and temperature
fluctuations along the
bottom-wall bisector.
– –: u0 at z=2h ¼ 0
(centerline). – – : u0 at
z=2h ¼ 20:437: –A–:
T0 at z=2h ¼ 0
(centerline). –D–: T0 at
z=2h ¼ 20:437:
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flow, like for instance the secondary motions. However, quite surprisingly, this
hypothesis seems to work well for the turbulent heat transfer.

The time-discretization procedure, used throughout this work, is quite
common to other DNS and LES codes for simulating incompressible flows. The
formal temporal accuracy is second-order for the velocity field, no matter what
type of boundary conditions are used for the intermediate velocity field at the
solid boundaries, and regardless the pressure-update formula (Armfield and
Street, 2002). Following Gresho (1990), for the square channel simulations we
adopted the simplest pressure-update formula (27), which leads to first-order
accuracy of the pressure field (Armfield and Street, 2002). This is consistent
with the use of the AF technique in these simulations, which makes useless the
recourse to the second-order pressure-update formula. We experienced lower
orders in the convergence of the results for the simulations of the two-
dimensional lid-driven cavity. These effects were shown to originate at the
solid boundaries, and to propagate deeply into the computational domain, at
least in the two-dimensional lid-driven cavity flow, which is completely wall-
bounded. The influence of the AF technique used to solve the modified
momentum equations was explored by using an iterative version of the
Projection 2 method (Armfield and Street, 2002). At each time-step, the
converged velocity and pressure fields satisfy the true momentum equations to
second-order accuracy, and the continuity equation exactly. However, by
refining the time-step one observes second-order convergence only in the
interior of the domain, while first-order convergence is attained near the
boundaries. These effects have been shown to originate from the AF technique,
since both the time-discretization and the iterative Projection 2 schemes are
second-order accurate. Therefore, when higher-order time-accurate algorithms
are needed, one is forced to abandon the AF technique.

The simulations of the weakly turbulent heat transfer in a square duct,
reported here, involved up to 10 million cells. The size of the problem required
using a parallel computer. The OpenMP algorithm proved to be adequate for
medium-size problems, and showed satisfactory scalability up to eight
processors.

References

Armfield, S. and Street, R. (2001), “The pressure accuracy of fractional-step methods for the
Navier–Stokes equations on staggered grids”, in Proceedings 10th Biennial Computational
Techniques and Applications Conference (CTAC2001), Brisbane, Australia.

Armfield, S. and Street, R. (2002), “An analysis and comparison of the time accuracy of fractional-
step methods for the Navier–Stokes equations on staggered grids”, International Journal
for Numerical Methods in Fluids, Vol. 38, pp. 255-82.

Babu, V. and Korpela, S.A. (1993), “On the direct solution of Poisson’s equation on a non-uniform
grid”, Journal of Computational Physics, Vol. 104, pp. 93-8.

Simulation of
turbulent heat

transfer

685



Bhatti, M.S. and Shah, R.K. (1987), “Turbulent and transition flow convective heat transfer in
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